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Abstract
Using the Boltzmann equation in the random-k approximation we study in detail
the dynamics of excited electrons in noble and transition metals. We present
results showing the role of secondary electrons, transport and electron–phonon
collisions in the hot-electron distribution, the two-photon photoemission (2PPE)
current and the relaxation time and compare them to experimental data for noble
and transition metals. The calculated relaxation times in Cu and Au show an
unusual peak at the threshold for photoexcitation from the d band in agreement
with results from 2PPE experiments. The height of the peak depends linearly
on the d-hole lifetime, which can be explained by tracing the origin of the
peak to Auger electrons. At zero temperature, ballistic transport of electrons
strongly reduces the relaxation time of low-energy electrons in the noble metals.
Taking into account elastic electron–phonon scattering, the relaxation time
increases significantly with rising temperature due to the randomization of
electron momenta by electron–phonon collisions. This result may explain
the surprising temperature dependence of the relaxation time observed in Cu.
The calculations for thin films show that the confinement of excited electrons
in the film reduces the transport effect and increases the relaxation time as
compared to a bulk sample. For the ferromagnetic transition metals Fe, Co
and Ni, the relaxation time is strongly spin dependent and the spin-averaged
relaxation time is much shorter than in the noble metals. Comparison with
experimental results reveals that the magnitude and spin dependence of the
relaxation time are determined by the density of states as well as the Coulomb
matrix elements. It is of interest that our results shed light on the validity of the
random-k approximation. This is important for extending our theory to allow
for k-dependent relaxation.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Within the last decade, femtosecond pump–probe techniques have been intensively used to
study the non-equilibrium dynamics of excited electrons in metallic, semiconducting and
more recently high-Tc superconducting materials. Time-resolved two-photon photoemission
(TR-2PPE) spectroscopy is a very efficient tool for measuring directly the time evolution of the
excited-electron distribution. It provides information on different processes such as electron–
electron scattering and secondary processes, electron–phonon collisions and excited-electron
transport contributing to the dynamics of excited electrons. In principle, the Keldysh formalism
which is an extension of the standard Green function formalism to the non-equilibrium case
is well suited for describing excited electrons. Unfortunately, this is not a method which can
be easily handled in the case where the band-structure is complicated. Furthermore, in such a
theory it is not easy to include properly secondary-electron generation, transport and electron–
phonon scattering. Such a quantum Boltzmann-equation-like treatment is a generalization of
the standard Boltzmann equation in the sense that it is more suitable for strongly interacting
electrons and that it properly includes quantum effects such as coherence and memory effects.

The standard Boltzmann equation can be understood as the limiting case where electrons
interact only weakly with each other and can be described as free particles in between collisions.
This should provide a reasonable description of the physics of excited electrons in metals at
sufficiently low electron density (or equivalently in the low-laser-intensity regime). In this
article, we use the standard Boltzmann equation in the random-k approximation. This means
that we do not use the energy–momentum relationship for bulk crystals, but use an isotropic
distribution of momenta for each energy. The random k-approximation is based on a semi-
classical representation in which the electron is described as a localized wavepacket rather
than as a single extended Bloch state. Furthermore, since the localized electron wavefunction
can be expressed as a superposition of Bloch states, there is no direct correspondence between
energy and momentum and no k-selectivity. Thus, as an input for the Boltzmann equation one
retains only the integrated density of states (IDOS) over the whole Brillouin zone.
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Let us discuss the appropriateness of the random-k approximation for the Boltzmann
equation and the interpretation of 2PPE. 2PPE spectroscopy is based on time resolution and
the dynamics of a non-equilibrium intermediate state, which makes transport and electron–
electron scattering effects important. These effects can be naturally treated using the
Boltzmann equation in the random-k approximation with its description of electrons as
localized wavepackets rather than extended Bloch states. This behaviour of electrons is
strongly supported by transport measurements [27–29], which clearly show that electrons
are excited close to the surface and propagate into the bulk with approximately the Fermi
velocity. In the random-k approximation, there is no distinction made for photoemission
from single crystals with different surface orientations, in agreement with experimental 2PPE
measurements [6], which also have not revealed clear features of k-resolution so far. Further,
in contrast to assuming Bloch states with definite momentum, in the case where the electronic
states contain a superposition of different momenta one can observe a photoemission current
for symmetry directions where the band-structure shows a band gap. This is also supported
by 2PPE experiments.

The Boltzmann equation in the random-k approximation is used to address a wide range
of physical problems which can be studied using 2PPE. We discuss relaxation times of excited
electrons observed in two-photon photoemission experiments in noble and transition metals.
In particular, we point out the effect of secondary electrons on the relaxation time which is
reflected in the photon energy dependence and the unusual peak structure of the relaxation time
of copper. Furthermore, transport of photoexcited electrons out of the detection region and
propagation of ballistic electrons into the bulk are discussed. We provide an explanation for
the influence of electron–phonon scattering and the temperature dependence of the relaxation
time observed in 2PPE. We then analyse the effect of film thickness on 2PPE. Finally, spin-
dependent relaxation times in ferromagnetic transition metals are studied.

2. Theory

As mentioned above, the use of the Boltzmann equation in the random-k approximation implies
(i) a semi-classical description of the electrons as localized wavepackets, (ii) that coherent
effects and many-body correlations can be (in the low-laser-intensity regime) neglected and
(iii) that no details of the band-structure are required except for the IDOS. The advantage of
making use of the Boltzmann equation in the random-k approximation is that it will provide
a very simple tool for analysing the population dynamics in non-equilibrium cases. Indeed
we will show that the theory contains only a small number of parameters. The most relevant
processes are included in a transparent way. Furthermore, our study allows a direct comparison
with experimental measurements.

2.1. Electron–electron scattering rates

For the Boltzmann equation the transition rates due to electron–electron collisions are derived
by using Fermi’s golden rule. The contribution of the electron–electron collisions to the time
evolution of the non-equilibrium distribution consists of two terms:

∂ fEσ

∂ t

∣∣∣∣
e−e

= ∂ fEσ

∂ t

∣∣∣∣
e−e

out

+
∂ fEσ

∂ t

∣∣∣∣
e−e

in

. (1)
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Figure 1. An illustration of secondary-electron generation.

These terms correspond respectively to scattering out of states with energy E and spin σ = ↑,↓
and are given by

∂ fEσ

∂ t
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e−e

out

= − fEσ

1

2

∫ ∞

−∞
dE ′ {hE ′σ W (Eσ , E ′σ) + hE ′σ̄ W (Eσ , E ′σ̄ )}, (2)

and
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∫ ∞

−∞
dE ′ {eE ′σ W (E ′σ , Eσ) + eE ′σ̄ W (E ′σ̄ , Eσ)}. (3)

Here,

W (Eσ , E ′σ) = 2π

h̄

∫ ∞

−∞
dε (eεσ hε+ω,σ 2|M↑↑|2 + eεσ̄ hε+ω,σ̄ |M↑↓|2), (4)

and

W (Eσ , E ′σ̄ ) = 2π

h̄

∫ ∞

−∞
dε eεσ̄ hε+ω,σ |M↑↓|2. (5)

The quantity eEσ = ρEσ fEσ is the number of electrons and hEσ = ρEσ (1− f Eσ ) is the number
of holes at energy E with spin σ . ρ denotes the density of states (DOS) and f the occupation
function. The energies involved in the transition are E , E ′, ε and ε + ω, where ω = E − E ′ is
the energy transferred in the transition. The spin is denoted by σ and the opposite spin by σ̄ .
The Coulomb matrix elements |Mσσ ′ |2 are averaged over momentum and energy [21, 35] and
include screening effects.

If we consider a level above the Fermi level, the ‘out-term’ describes the relaxation of the
excited electrons, whilst the ‘in-term’ is a source term which corresponds to the refilling of the
level by highly excited electrons. This term is the so-called secondary-electron generation rate.
The process is illustrated in figure 1. The secondary-electron generation has two contributions:
one corresponds to the relaxation of more highly excited electrons and another,called the Auger
process, describes the refilling of a hole by a cold electron (an electron below the Fermi level).
The latter process is mainly controlled by the hole lifetime. As will be illustrated later, the
secondary electrons are crucial for understanding the dynamics of excited electrons in noble
metals. It is interesting to note that if one assumes that secondary electrons are negligible, i.e. if
we keep only the out-term, then the relaxation time reduces to the lifetime which corresponds
to the relaxation time approximation. In this case, it is straightforward to show that we recover
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Figure 2. An illustration of the transport of excited electrons away from the surface; λopt, λesc are
respectively the optical penetration depth and the escape depth.

the Fermi-liquid behaviour τ (E) ∝ (E − EF)
−2 for the lifetime of a single excited electron

[21]. The Boltzmann equation in the relaxation time approximation simplifies to

∂ f (Eσ)

∂ t

∣∣∣∣
e−e

out

= − f (Eσ)

τee(Eσ)
, (6)

with the definition

1

τee(Eσ)
= 1

2

∫ ∞

−∞
dE ′ {hE ′σ W (Eσ , E ′σ) + hE ′σ̄ W (Eσ , E ′σ̄ )} (7)

for the inverse lifetime. The notation τee is introduced to show that this is the single-electron
lifetime due to electron–electron scattering.

2.2. Ballistic transport

There are several experiments providing evidence that supports the idea that a minimal
theoretical model should include the transport of electrons out of the detection region. For
instance, this was clearly illustrated by reflectivity measurements on Au films of varying
thickness. The experiments have shown strong ballistic electron transport. The question
of whether the transport is already effective over a very short timescale is still a subject of
controversy among theoreticians. Let us provide some simple arguments for transport of
electrons out of the detection region already influencing the dynamics of the electrons on the
femtosecond timescale, illustrated by figure 2. Excited electrons are created within the optical
penetration depth λopt which depends on the laser frequency. If they absorb a second photon
within the escape depth λesc, they can be photoemitted. Once excited, these electrons propagate
isotropically with a velocity of the order of the Fermi velocity vF. As a consequence, an average
motion of electrons into the bulk develops. The propagation of electrons parallel to the surface
is not relevant, since the size of the laser spot is Rl which is of order µm—much larger than
the other available length scales. Since the initial distribution of excited electrons after the
pump pulse has a typical profile of the form f (z) ∝ exp(−z/λopt), where λopt = 15 nm for
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a photon energy hν = 3 eV, this gives a typical transport timescale τtr = λopt/vF = 10 fs.
Hence for electronic lifetimes longer than few tens of femtoseconds, the ballistic transport will
efficiently transport electrons out of the probed region on a timescale much shorter than the
lifetime. This shows immediately that the transport of electrons can be seen as an additional
effective decay channel which cannot be neglected. The experimental evidence for transport
of electrons into the bulk provide furthers support for the description of the excited electrons
as localized wavepackets, which supports the use of the Boltzmann equation. The transport
can now be implemented in a very simple way, since it results from the gradient in the particle
density driven by the non-uniform heating of the sample by the pump pulse. Thus, we have

∂ f (E, z, vz)

∂ t

∣∣∣∣
trans

= −vz ∇z f (E, z, vz). (8)

In addition to the energy, E , the distribution function depends on the distance from the surface,
z, and on the z-component of the velocity, vz . One should also take into account that due
to their different natures, the sp and d electrons have different velocities. Indeed due to the
flatness of the d bands, which reflects the strongly localized character of d wavefunctions, one
concludes that only sp electrons will participate in the transport.

2.3. Electron–phonon scattering

So far we have not discussed the role of electron–phonon collisions which are known to be
crucial on the picosecond timescale, since they provide the energy transfer to the lattice and
allow the return of the system to equilibrium. After about 1 ps the electrons are thermalized
and the transfer of energy to the lattice starts to get effective and leads to the cooling of the
electrons. This is well described and understood in the framework of the two-temperature
model. But on the femtosecond timescale in which we are interested the exchange of energy
between electrons and lattice via phonons is negligible and the electrons are not thermalized yet.
However, if (i) sufficiently large momentum transfer is allowed and if (ii) the electron phonon
scattering rate is large enough, one should expect electron–phonon collisions to have a strong
effect on the nature of the electron transport. As we will see later, these two conditions are
effectively fulfilled in noble metals. For example, in Cu the electron–phonon scattering time is
about 30 fs, the average phonon energy h̄〈ωph〉 ≈ 20 meV and the Debye wavevector kD is of
order π/a. The random-k approximation for the electron–phonon scattering is equivalent to
assuming that the electrons scatter with a bath of phonons, not keeping track of the momentum
transfer and the details of the phonon spectrum. We assume that all the transitions between
states of momenta kz and k ′

z are equiprobable and that the electron energy remains unchanged.
With these approximations one gets [33]

∂ f (E, z, vz)

∂ t

∣∣∣∣
e−p

= −

∑

[1 − f (E, z, v′
z)] f (E, z, vz)

+ 

∑

f (E, z, v′
z)[1 − f (E, z, vz)], (9)

where


(T ) = 2π

h̄
|g|2(2〈n〉) + 1)ρ(EF). (10)


 is the electron–phonon scattering rate. The coupling function g is taken as a constant and
〈n〉 denotes the thermal average of the phonon occupation. In the limit kT 
 h̄〈ωph〉 the
electron–phonon scattering rate reduces to the well known formula


(T ) = 2π

h̄
λkT, (11)

where λ = 2|g|2ρ(EF)/(h̄〈ωph〉) is the electron–phonon mass enhancement factor.
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Figure 3. An illustration of the monochromatic 2PPE process with initial state E1, intermediate
state E2 and final state E3.

2.4. 2PPE intensity and relaxation time

We now proceed to the derivation of the two-photon photoemission current I 2PPE(E,�t),
where �t is the time delay between pump and probe pulses. The 2PPE process is illustrated
in figure 3. First, with the pump pulse we excite the electrons from a level E1 below the
Fermi surface to an intermediate level E2. The time evolution of the occupation of electrons
and holes is calculated within the Boltzmann equation. Then, after a time delay �t , a second
laser pulse excites the electrons from the intermediate level E2 to a final level E3 above the
vacuum energy. The electrons can escape from this level and contribute to the measured 2PPE
current. The electron in the final state is emitted into the vacuum only if it is localized in the
vicinity of the surface within the escape depth λesc. The escape depth is the mean free path
of electrons above the vacuum energy. The escape depth is normally energy dependent, but
its dependence for electrons whose energy is close to the vacuum energy is not well known.
Therefore, for simplicity we consider a constant value which is an average over energies varying
between 0 and 10 eV above the vacuum. For the calculations we use an escape depth of order
λesc ≈ 1.5 nm which is one order of magnitude smaller than λopt . Thus we get for the 2PPE
current

I 2PPE(E3,�t) =
∫ ∞

−∞
dt P(t − �t)

∫ ∞

0
dz e−z/λesc f (E2, z, t). (12)

Here, a convolution of the probe laser intensity P(t) with the distribution in the intermediate
level is performed. The integration over z contains the restriction that only electrons within
the escape depth will be detected. According to equation (12) the 2PPE current depends only
on the dynamics of the intermediate level.

Now we extract the relaxation time from the 2PPE current in the same way as the
experimentalists do. For a given energy, we first integrate the Boltzmann equation in the
relaxation time approximation to get

∂ f

∂ t
= P(t) − f

τ ∗ . (13)

With this we calculate the current I 2PPE(E3,�t) according to equation (12), where the
integration over z is replaced by fτ ∗ (t). The best fit of the parameter τ ∗ to an exponential
decay of I 2PPE is taken as the relaxation time.

It is important to stress that the extracted relaxation time τ ∗ is not a lifetime of a single
excitation, since it includes both the effect of the secondary-electron generation processes and
transport, whereas τ ∗ refers to the population dynamics of excited states.
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Figure 4. DOS for the noble metals [1]. Contributions from s/p and d electrons are indicated.

3. Dynamics of hot electrons in noble metals

The strong similarity of the electronic structures of Cu, Ag and Au already suggests that the
lifetimes in these metals should be very similar. It is instructive to look at the DOS of Cu,
Ag and Au which are shown in figure 4. One notes that the DOS is mainly of sp character
in the vicinity of the Fermi energy, while it is essentially dominated by d electrons below a
characteristic d-band threshold, which is about 2 eV in Cu and Au and 4 eV in Ag. While the
sp electrons prevail in the vicinity of the Fermi energy, one expects the d bands to produce
deviations from a free-electron-like behaviour. For large enough photon energies, excitations
out of the d bands are expected to play a role.

3.1. Lifetime calculations

First, we neglect secondary electrons, ballistic transport and electron–phonon collisions. We
use the random-k approximation. The Coulomb matrix element of the out-term is fitted to the
value from ab initio calculations. It is important to stress that our theory contains only two
parameters for electron–electron scattering matrix elements: one for the out-term and one for
the Auger scattering rate (in-term). We use the DOS [1] which are shown in figure 4.

In figure 5 we show our calculated single-electron lifetime (solid curve) together with
Fermi-liquid theory (FLT) and ab initio calculations. It is interesting to note that the ab initio
calculations provide very different results from standard FLT calculations. In all cases the
lifetimes from ab initio calculations are significantly larger than the ones calculated within
FLT by a factor of 2–3. This is an illustration that the screening due to d electrons is very
strong. However, one should note that in the case of Ag, where the d bands are located deeper
with respect to the Fermi energy, the FLT results are closer to the ab initio ones, indicating a
weaker screening of the d electrons than in Cu and Au. Thus, we take the ab initio calculations
as the reference for comparison with the calculated lifetime within our theory. To get good
agreement with the ab initio results, we find that the Coulomb matrix element should be
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Figure 5. Single-electron lifetimes for Cu, Ag and Au calculated in the random-k approximation.
Also results of FLT and of ab initio calculations by Campillo et al [2] and by Keyling et al [3] are
shown.

M = 0.8 eV for Cu and Au and M = 1.0 eV for Ag. The larger value required for Ag
agrees with the remark that the screening is somewhat weaker in Ag than in Cu and Au. It is
remarkable that with only one fitting parameter our simple model provides a good agreement
with the ab initio calculations.

3.2. Unusual behaviour of the relaxation time

Recent measurements of the relaxation time in Cu have shown an unusual peak at an energy
depending linearly on the pump laser frequency. These interesting and unexpected results
observed by Knoesel et al [5] are shown in figure 6.

It was suggested that this peak could originate from Auger electrons, i.e. secondary
electrons created by the refilling of the d-band holes [5, 6]. In order to investigate the effect of
Auger electrons on the relaxation time we have analysed in detail their contribution to the total
hot-electron distribution and their influence on the relaxation time in the following. Note that,
as we mentioned already, one should distinguish between lifetime and relaxation time, since
the latter results from the non-equilibrium dynamics of the electrons and contains the effect of
other contributions such as secondary-electron generation processes and transport. Previous
theories neglecting secondary electrons were not able to describe this peak.

3.3. Secondary electrons and the d-hole lifetime

In figure 7(a) we show results for Cu for the distribution of hot electrons during photoexcitation
at t = 0 (centre of the laser pulse) (a) including only primary electrons, (b) including secondary
electrons without Auger electron contributions and (c) including also Auger electrons. In the
case where Auger electrons are included,we have considered different d-hole lifetimes,τh = 9,
17 and 35 fs. The distribution fP of primary electrons shows a distinct peak at E − EF = 1.1 eV
and a threshold at 1.3 eV, reflecting the structure of the d band. On including secondary
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Figure 6. Relaxation times and 2PPE spectra for Cu obtained by Knoesel et al [5] using different
pump photon energies.

Figure 7. (a) The distribution f (E, t = 0) of excited electrons during photoexcitation for different
cases (1: only primary; 2: primary and other secondary; 3–5: primary, other secondary and Auger
electrons for different values of the hole lifetime τh). (b) The ratio of the distribution of Auger
( fA) and other secondary electrons ( fOS) to the distribution of primary electrons ( fP). The pulse
duration is τl = 70 fs and the photon energy hν = 3.3 eV.
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Figure 8. Effective relaxation time of excited electrons (determined by a fit to the 2PPE signal) for
different hole lifetimes τh as a function of energy. The inset shows the relaxation time at the peak
position, E − EF = 1.3 eV, as a function of τh.

electrons, the distribution is strongly increased, especially below the peak at 1.1 eV and also
above the threshold. For longer hole lifetime, fewer secondary electrons are generated: a
longer d-hole lifetime corresponds to a smaller rate of scattering into d holes and therefore to
fewer Auger electrons being generated in a given time.

For the analysis it is instructive to write the total hot-electron distribution as f =
fP + fA + fOS, where fP, fA and fOS denote the number of primary, Auger and other secondary
electrons, respectively. In figure 7(b), we show the ratios fOS/ fP and fA/ fP. Note the strong
variation from 1.0 to 1.5 eV due to the variation of fP. fOS/ fP and fA/ fP show similar
shapes—with a dip at the position of the peak in f (1.1 eV) and a peak at the threshold in f
(1.3 eV). These data show clearly that the Auger electron contribution largely dominates for
energy between 1.2 and 2 eV.

In figure 8 the hot-electron relaxation time is shown for different cases (as in figure 7).
As previously explained, the relaxation time is determined by a fit of the calculated 2PPE
correlation signal I 2PPE(�t) to a function describing exponential decay. When secondary
electrons are included, the relaxation time is increased with respect to τP and additionally a
small peak appears at 1.3 eV. The enhancement with respect to the lifetime shows how important
the secondary-electron cascade is. The position of the peak coincides with the threshold for
excitation from the d band, in agreement with experimental results [5, 6, 36, 37]. Furthermore,
it was also checked that in agreement with the experimental data its position is shifted linearly
with the laser frequency.

The deviation of τ including secondary electrons from the single-electron lifetime τP

shows a similar behaviour to the function fS/ fP in figure 7(b). The deviation is smallest at the
position of the peak in fP (1.1 eV) and largest at the threshold for excitation from the d band
(1.3 eV). Thus, in the region of the peak one observes mainly relaxation of primary electrons,
while above the threshold the influence of secondary (especially Auger) electrons becomes
stronger. At high energy where the secondary-electron contribution becomes negligible, the
relaxation time coincides with the lifetime.
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Figure 9. The dependence of the relaxation time on the ratio of optical transition matrix elements
R = |Md→s|2/|Ms→s|2. The pulse duration is τl = 70 fs, the photon energy is hν = 3.3 eV and
the hole lifetime is τh = 35 fs.

The peak becomes more pronounced with increasing hole lifetime. For τh = 35 fs the
height of the peak is �τ = τ (1.3 eV) − τ (1.2 eV) ≈ 10 fs. This is in fair agreement with
experimental results, but still somewhat too small. In different experiments on single crystals
the measured height of the peak was 15–40 fs [5, 6, 36, 37]. An experiment on polycrystalline
Cu has given �τ = 17 fs [37]. Note that the results of our theory in the random-kapproximation
are most suitable for comparison with measurements on polycrystalline material.

The inset of figure 8 shows the relaxation time at the threshold as a function of the d-
hole lifetime. One can see that the relaxation timescales linearly with the d-hole lifetime. This
shows that the d-hole lifetime may be the key factor determining the peak in the relaxation time.
Its position depends only on the position of the d-band threshold and on the laser frequency.

The influence of the Auger electrons and the d-hole lifetime on the excited-electron
relaxation time can be made clear with the following argument. When the holes in the d band
created by the optical excitation are filled, Auger electrons are scattered into the excited level.
The relaxation time observed in this level is apparently increased, since the refilling by Auger
electrons occurs with a time delay with respect to the excitation of primary electrons. As a
consequence, one gets a longer relaxation time. The longer the d-hole lifetime, the later (on
average) the Auger electrons are scattered into the excited level and the longer the observed
relaxation time. The fact that the dependence of the relaxation time on the d-hole lifetime
is linear might seem surprising, since a longer d-hole lifetime implies not only a longer time
delay, but also a smaller number of Auger electrons generated in a given time interval (see
fA/ fP in figure 7(b)). However, the linear behaviour shows that the time delay (determined
by the hole lifetime) is the decisive factor and that the number of Auger electrons generated
does not play an important role.

In figure 9, we show the dependence of the peak on the optical transition matrix element
ratio, which is another free parameter of the theory. Previously we have seen that the structure
of the peak is intimately related to the photoexcitation below and above the d-band threshold.
The relative intensity of excitation below and above threshold is governed by the ratio of the



Theory for the dynamics of excited electrons in noble and transition metals R751

Figure 10. The ratio of the Auger to the primary electron contribution, fA/ fP, at E − EF = 1.3 eV,
as a function of the inverse hole lifetime 1/τh for different laser pulse durations τl. In the inset, we
show fA/ fP as a function of τl/τh. The dashed curve is a guide to the eye and indicates that the
ratio fA/ fP is controlled by τl/τh.

optical transition matrix elements for d → sp and sp → sp transitions, R = |µds/µss|2.
The results shown so far were obtained for equal matrix elements, R = 1. However, due to
selection rules, one would expect |Mds|2 > |Mss|2. For example, for Ag, a ratio R = 2.21
is estimated [38], which should also be a good estimate for the magnitude of R for Cu. In
figure 9 we show the relaxation times for R = 1, 2 and 4, using τh = 35 fs for the hole lifetime.
We find that the height of the peak, �τ = τ (1.3 eV) − τ (1.2 eV), varies significantly from
9 to 14 fs (increase by 60%) when changing R from 1 to 2. However, for a further change of
R from 2 to 4, �τ increases only slightly. In conclusion, for realistic values of R = 2 and
τh = 35 fs, we obtain for the height of the peak �τ = 14 fs. This is in fair agreement with
experimental results for polycrystalline Cu, �τ = 17 fs [37]. Additionally one should mention
that since in our theory there is no distinction between direct and indirect transitions, R can
also be interpreted as an effective ratio including both effects. Also note that the inclusion of
transport affects only the absolute magnitude of the relaxation time, but not the shape and the
height of the peak.

3.4. Effect of transport: ballistic and diffusive regimes

In this section we will discuss how transport affects the dynamics of excited electrons. The
importance of transport of excited electrons out of the detection region was noted in 2PPE
experiments [5, 7, 30, 31]. Also, reflectivity measurements on Au films of varying thickness
have revealed that a strong ballistic component of electronic transport is present [27–29]. An
order-of-magnitude estimate for the transport timescale is obtained from the velocity of the
electrons and the gradient of the distribution as 1/τtr ≈ v ∂ f/∂z. The initial distribution is
created with a spatial profile given by f (z) ∝ exp(−z/λopt), where the optical penetration
depth for Cu at hν = 3 eV is λopt = 15 nm. The average transport velocity is about half of the
Fermi velocity. The transport timescale is then given by τtr ≈ 2λopt/vF = 20 fs. This shows
that the transport timescale is of the order of the electronic relaxation times in noble metals.
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Figure 11. Effective relaxation times for Cu, Ag and Au with and without ballistic transport for
bulk systems. The laser pulse duration is τl = 70 fs and the photon energy hν = 3.3 eV. For Cu
and Au, the d-hole lifetime is taken as τh = 35 fs.

Thus one expects a significant effect of transport on the relaxation time. Transport acts like an
additional ‘decay’ channel and reduces the relaxation time, since particles leave the detection
region and penetrate into the bulk. However, elastic collisions by phonons, defects or grain
boundaries can reduce the effect of transport (we consider electron–phononcollisions as elastic
because the energy transfer is negligible compared to the excitation energies of the electrons).
If the collision rate is high enough, transport will be less effective, since it takes place in a
diffusive regime. Therefore, it is important to determine the effect of transport and its possible
reduction by elastic collisions. We are going to discuss the effect of transport in two regimes
determined by the rate of elastic collisions: (1) the ballistic regime, when no elastic collisions
are present; (2) the diffusive regime, when the elastic collision rate is high enough to impede
ballistic transport. In this section, ballistic transport will be discussed. The regime of diffusive
transport will be studied in the next section in connection with the temperature dependence.

Ballistic transport of excited electrons, i.e. transport with the Fermi velocity in a
collisionless regime, is expected to be present at low temperature in samples with few scattering
centres such as impurities, defects or grain boundaries. Indeed a strong ballistic component
of transport has been observed in reflectivity measurements on thin Au films [27–29]. Thus,
ballistic transport may be important for the femtosecond dynamics of excited electrons. The
case of ballistic transport in bulk samples is the simplest case which can be used to assess the
maximum effect of transport on the relaxation time. All other cases, such as diffusive transport
or transport in thin films, lead to a weaker effect.

In figure 11 we show results for the relaxation times in Cu, Ag and Au demonstrating
ballistic transport effects. The case without transport includes secondary electrons. The effect
of transport is a strong reduction of the relaxation time at low energy. This reflects that transport
of electrons out of the detection region acts like an additional decay mechanism on top of
electron–electron scattering. For example, at E − EF = 1.0 eV the relaxation time is reduced
by about 50% for all three metals. The reduction increases towards low energy and starts to
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be important for relaxation times longer than about 40 fs, which corresponds to the typical
transport timescale. For relaxation times much shorter than this, transport has no significant
effect. The peak structure in the relaxation time of Cu and Au is qualitatively unchanged by the
effect of transport. Thus, the discussion about the effect of secondary electrons in the previous
section remains valid in the presence of transport.

3.5. Effect of the lattice temperature on the relaxation time

Recently an unusual temperature dependence of the relaxation time was reported [6]. It
was found that the relaxation time increased with increasing lattice temperature. This is
in contrast to the temperature dependence for the lifetime from FLT, which predicts a lower
lifetime for a higher temperature due to the additional phase space available for electron–
electron scattering. In this section, we present calculations which can provide a straightforward
and simple explanation of the puzzling temperature dependence of the relaxation time. The
proposed explanation is based on the influence of electron–phonon scattering on the transport
of excited electrons. We have shown that ballistic transport strongly reduces the relaxation
time. We argue that quasi-elastic electron–phonon collisions reduce the efficiency of transport
and thereby increase the observed relaxation time.

We start by demonstrating how collisions affect the dynamics of the excited-electron
distribution before discussing the temperature dependence of the relaxation time. We discuss
the case of Cu and elastic collisions caused by phonons. As discussed in the theoretical part,
the rate of elastic scattering by phonons is given by 
 = 2πkBT λ, where λ ≈ 0.15 is the
electron–phonon mass enhancement factor in Cu [32]. We discuss the behaviour at T = 0
(collisionless or ballistic regime) and at T = 300 K (
 = 0.025 eV or τep = h̄/
 = 27 fs).

In figure 12 we plot the average distance from the surface as a function of time after the
photoexcitation. It is a measure for the penetration of excited electrons into the bulk and is
defined as

〈z(t)〉 =
∫ ∞

0 dz z N(z, t)∫ ∞
0 dz N(z, t)

, (14)

where N(z, t) = ∫ ∞
0 dE ρ(E) f (E, z, t) is the average number of excited electrons at distance

z and time t . Three cases corresponding to T = 0, 50 and 300 K are shown in the figure.
For T = 0 (ballistic regime) we observe a linear increase of the distance with time. We get
for the average velocity �〈z〉/�t ≈ vF/2, where the factor 1/2 can be understood easily by
considering the average of the velocity in the z-direction. For T = 50 K, the propagation
into the solid is slower and a deviation from the linear behaviour is observed starting at about
t = 150 fs, which is close to the electron–phonon collision time at T = 50 K of about
τep = 170 fs. This reflects the influence of inelastic collisions and a transition to a diffusive
regime of transport. For T = 300 K one observes a diffusive behaviour from the start,
due to the fact that the electron–phonon collision time of τep = 27 fs is shorter than the
timescale over which we investigate the propagation. We illustrate this by fitting the data to
〈z〉 = √

D(t − t0), which is expected in the case of diffusive motion. An offset t0 is introduced
in order to take into account the finite duration of the laser pulse generating excited electrons.
We get D = 32 nm2 fs−1, which agrees very well with the expression for the electronic
diffusion coefficient D = vFle/3 = 29 nm2 fs−1, where le = vFτe−ph is the electronic mean
free path. It is interesting to note that at t = 0.5 ps the excited electrons have already reached
an average distance of 120 nm, about ten times larger than the optical penetration depth. This
is in agreement with a value of 100 nm used to describe the initial spatial distribution of
excited electrons in the two-temperature model [29]. Such a model does not describe the
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Figure 12. The average distance 〈z〉 of excited electrons from the surface after laser excitation.
Note that at T = 0 and 50 K the transport is ballistic, while at T = 300 K it is diffusive due to
elastic electron–phonon collisions. The dashed curve is a fit using 〈z〉 = √

D(t − t0). The optical
penetration depth is 15 nm.

thermalization of the electron gas and starts to be valid only after t � 0.5 ps. Thus, one has
to add 〈z(t = 0.5 ps)〉 to the optical penetration depth. The previous figure has demonstrated
that the dynamics of the excited-electron distribution is affected by elastic collisions. We
have found that at higher temperature the increased electron–phonon collision rate leads to a
reduction of the transport effect. In figure 13 we present theoretical results for the relaxation
time for T = 50 and 300 K [33], together with the corresponding experimental results from [6].
First of all we note that the peak structure due to Auger electrons (see the discussion above) is
not affected by transport. The change of the temperature from 50 to 300 K leads to an increase
of the relaxation time. The increase is very small at high energy (E − EF > 1.5 eV), but
increases strongly with decreasing energy. This is understandable since collisions reduce the
effect of transport, which is strong at low energy and weak at high energy. The peak structure
of the relaxation time and its overall magnitude are in agreement with the experimental results.
Note especially that the variation with temperature agrees excellently with the experimental
results. We used λ = 0.15 from experiments to describe the electron–phonon coupling and
did not introduce any arbitrary parameters in the theory.

3.6. Thin films and bulk behaviour of the relaxation time

We have found an important effect of transport in bulk samples. Although most experiments
are performed on bulk samples, some data are available for films of different thicknesses.
Films of varying thickness offer the opportunity to control the effect of transport. In films, the
ballistic transport into the bulk of the solid is impeded by the reflection of the electrons at the
substrate interface—the excited particles are confined in the film. By varying the thickness
from large to small values compared to the optical penetration depth λopt , the influence of
transport should be reduced from its maximum for bulk samples to zero for very thin films.
We demonstrate that the film thickness can be used as a parameter to study and to control the
transport effect. Further, it is shown that transport has no effect for films of thickness d < λopt ,
while its effect is maximal for d ∼ 10λopt.
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Figure 13. The temperature dependence of the relaxation time τ (experimental data for Cu(111)
from [6]). The dotted curve shows the 2PPE spectrum I 2PPE(E,�t = 0) in arbitrary units. The
pulse duration is 12 fs and the photon energy is 3.1 eV.

Figure 14. Relaxation times in Au films of different thicknesses. The temperature is T = 300 K,
the laser pulse duration is τl = 40 fs and the d-hole lifetime is taken as τh = 35 fs.

In figure 14 we compare the relaxation time in Au films of different thicknesses. The data
show a peak at 1.6 eV, which is caused by Auger electrons as discussed above. The effect of
changing the film thickness from 10 to 26 nm and finally going to a bulk sample is comparable
to that observed experimentally [34]. Thus for the effect of film thickness for Au, the theory
gives results in reasonable agreement with the experiments.

What could cause the difference in results between Ag and Au? The first significant
difference between Ag and Au is as regards the location of the d bands. However, the similarity
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Figure 15. Relaxation times in Ag films of different thicknesses. Theoretical results for two cases:
(a) excitation within the optical penetration depth λopt = 14.5 nm; (b) excitation only within
λexc = 1.5 nm to simulate a surface excitation. The temperature is T = 300 K and the laser pulse
duration is τl = 40 fs.

of the calculated results for Au and Ag under the same conditions shows that the d bands in
Au do not strongly influence the transport properties. The second difference is as regards the
plasmon energy, which is around 4 eV in Ag and 8 eV in Au. The photon energy of 3.3 eV
is quite close to the plasmon energy in Ag, but not that in Au. Also, the surface roughness
of the Ag films used in the experiments was probably higher than that of the Au films [34].
For a rough surface, the possibility of exciting surface plasmons is enhanced. Thus there are
some indications that the excitation in the Ag films may be dominated by surface plasmons.
In order to test whether this leads to a stronger thickness dependence, we have calculated the
relaxation time for the case of an excitation which is localized at the surface. In the calculation,
we have excited electrons only within λexc = 1.5 nm from the surface. We have checked that
a further decrease does not produce any changes in the relaxation time. The results for the
surface excitation are shown in figure 15(b). It is seen that the difference between the 15 and
30 nm films is much stronger than in the case of a bulk excitation with λopt = 14.5 nm. This
indicates that a surface excitation could indeed lead to a stronger film thickness dependence
of the relaxation time.

In conclusion, the thickness dependence of the relaxation time offers the opportunity
to study the effect of transport, which might depend strongly on details of the excitation
mechanism. The strong difference observed in experiments between Au and Ag films of
comparable thickness is unexpected. The calculations indicate that under the same conditions
for the optical excitation, the thickness dependences of Au and Ag are quite similar. An
excitation mainly localized at the surface due to surface plasmons in the case of Ag, but not
in Au, is a possible explanation for the much stronger thickness dependence in Ag. It would
be desirable to test this explanation experimentally, e.g. by using Au and Ag films of similar
quality or by lowering the photon energy in order to avoid the excitation of surface plasmons.
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4. Dynamics of hot electrons in transition metals

The study of the dynamical properties of the ferromagnetic transition metals Fe, Co and Ni
has attracted a lot of research activity recently. They are particularly interesting because of
the strong influence of the localized d electrons and because of their magnetic properties. The
study of these materials is important for a better understanding of spin-dependent scattering
mechanisms and in view of possible applications in magnetic recording technology and spin-
electronic devices.

The influence of the unoccupied d bands in transition metals was studied in 2PPE
experiments [7, 8]. It was found that as a consequence of the large phase space, the relaxation
time in transition metals is shorter than that in noble metals. Analysing the spin of the
photoemitted electrons, Aeschlimann et al [9] determined spin-dependent relaxation times
in ferromagnets. The spin dependence of the mean free path was also found in a transmission
experiment using thin ferromagnetic Co films [10]. A spin-dependent mean free path leads to a
spin-filter effect, i.e. the preferential transmission of electrons with a particular spin orientation
through ferromagnetic materials. This can be used to obtain spin-polarized electrons. The
short-time dynamics in ferromagnetic transition metals has been intensively studied by optical
techniques, e.g. using the magneto-optical Kerr effect or magnetization-dependent second-
harmonic generation [11–14, 16–18]. Interesting magnetic effects were found—in particular a
fast magnetic response to the optical perturbation. Thus, it is of great interest to study in detail
the dynamics of excited electrons in ferromagnetic transition metals, in particular magnetic
effects such as the spin dependence of the mean free path and of the relaxation time, and the
time evolution of the spin polarization leading to a transient magnetization.

In the following section, first the single-electron lifetime and then the effective relaxation
time (i.e. including secondary electrons) are discussed.

4.1. Single-electron lifetime

The single-electron lifetime is obtained when no effects due to secondary electrons or transport
are taken into account. Thus the lifetime should not be directly compared to relaxation times
determined in 2PPE experiments, which contain effects of secondary electrons and transport.
The comparison with experiments will be made for the relaxation time presented in the next
section, which includes these effects. The spin-dependent mean free path λσ for inelastic
electron–electron scattering is related to the lifetime τσ via λσ = τσ v, where v is the electronic
velocity.

Due to the ferromagnetic exchange splitting, the majority and minority electrons have
different DOS and also different lifetimes. The results for the lifetime are expressed in terms
of the spin-averaged lifetime 1

τave
= 1

2 ( 1
τ↑

+ 1
τ↓

) and of the ratio τ↑
τ↓

of the lifetimes.
The lifetimes are calculated using equation (7). The Coulomb matrix elements are

expressed in terms of two parameters:

M2 = |M↑↑|2 + |M↑↓|2
2

, m = |M↑↑|
|M↑↓| . (15)

Here M↑↑ describes scattering between equal spins, while M↑↓ is for opposite spins. M mainly
influences the spin-averaged relaxation time τave, while m influences the ratio τ↑/τ↓. In the
calculation of the lifetime, we use the same energy-independent Coulomb matrix element
M = 0.8 eV and |M↑↑/M↑↓| = 1 as used for Cu, where ab initio calculations of the lifetime
are available. For the transition metals this is not the case and thus it is reasonable to use
the same parameters as for Cu as a starting point. This enables direct comparison between
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Figure 16. DOS for Fe, Co, Ni and Cu used as input for the calculation of the electron–electron
scattering rates in equations (2)–(5).

the lifetimes of the different metals and a determination of the influence of the DOS. For the
ferromagnetic transition metals the ratio |M↑↑/M↑↓| has an effect on the calculated lifetime
because of the different densities of states for majority and minority electrons. Due to the
Pauli exclusion principle the interaction between electrons of equal spin is weaker than the
one between electrons of opposite spin. Thus, one expects |M↑↑/M↑↓| < 1.

We first calculate the lifetime of Ni, Co and Fe using equal Coulomb matrix elements. In
this case, the calculated results can be understood only on the basis of the different DOS shown
in figure 16 and used as input for the calculation. The influence of the DOS on the single-
electron lifetime is seen in equation (2) for the scattering rate expression. The scattering rate,
the inverse of the lifetime, is proportional to an integral over a combination of terms which are
all products of three factors of the DOS. The first factor represents the free states available for
the relaxation of the initial electron, the second factor represents the occupied states containing
possible scattering partners for the electron–electron collision and the third factor stands for
the unoccupied state into which the second electron is scattered during the transition. Due to
the integration over energy, even strong features in the DOS appear only as weak structures in
the lifetime.

In figure 17(a) we show the lifetimes of Ni, Co and Fe. When comparing the single-
electron lifetime of Cu with that for the transition metals, one can see that Cu has a much
longer lifetime than the other metals. This is due to the small total DOS close to the Fermi
energy. In Cu, the d bands are located about 2 eV below the Fermi energy and there is only
a very small total DOS close to the Fermi energy (figure 16). The small d DOS close to the
Fermi energy is due to hybridization with sp-like states.

In Ni with one electron fewer than Cu, the d bands move closer to the Fermi energy.
Furthermore, the d bands are split into a minority spin and a majority spin band and a small
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Figure 17. (a) The spin-averaged single-electron lifetime τ , (b) the ratio τ↑/τ↓ of the majority and
minority lifetimes, (c) the spin-averaged relaxation time (including effects of secondary electrons),
(d) the ratio τ↑/τ↓ of the majority and minority relaxation times. For the Coulomb matrix elements
we use M = 0.8 eV and M↑↑/M↑↓ = 1.

portion of the minority d band is unoccupied, extending up to about 0.4 eV above the Fermi
energy (figure 16). Due to the pronounced peak at the upper edge of the d-band DOS, the
minority DOS close to the Fermi energy is extremely large. This leads to a large phase space
for electron–electron scattering at low energy. Thus at low energy (below E − EF = 1 eV) Ni
has the smallest calculated single-electron lifetime among the four elements.

Co, with one electron fewer than Ni, has an even larger portion of unoccupied minority
DOS, extending up to about 1.2 eV above the Fermi energy. Although the total number
of unoccupied states is higher in Co than in Ni, the minority DOS at the Fermi energy is
lower in Co. Thus at low energy (below 1 eV), Co has less phase space for electron–electron
scattering and the calculated lifetime is longer than in Ni. With increasing energy, more and
more unoccupied states become available in Co, so above 1 eV, the calculated single-electron
lifetime in Co becomes shorter than that in Ni.

In Fe, again with one electron fewer compared to Co, the unoccupied minority DOS
extends up to 2.4 eV above the Fermi energy,and even the majority DOS has a small unoccupied
fraction. The minority DOS at the Fermi energy in Fe is lower than in Co and in Ni, so Fe has
the smallest phase space and the longest calculated lifetime at low energy. At higher energy
(above 3 eV), all of the unoccupied d states in Fe are available for a transition and one calculates
τFe < τCo < τNi.

In conclusion, at low energy (below E − EF = 1 eV) the lifetime is governed by the
DOS close to EF. Our theory with equal M for the different metals predicts τNi < τCo < τFe.
This trend changes for Co and Ni above 1 eV. Then we get τCo < τNi. At high energy (above
3 eV) the lifetime is governed by the total number of free states above EF, and this leads to
τFe < τCo < τNi. This relation is also observed in transmission experiments above the vacuum
energy for electrons with energies above E − EF = 5 eV [19, 20].

In figure 17(b) the ratio of majority to minority single-electron lifetime τ↑/τ↓ is shown.
The results can be understood by using equation (7) for τσ . One can already get a good idea
of the behaviour of τσ if one considers only the first factor of the DOS which describes the
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phase space available for the relaxation of the excited electron. In this case the scattering rate
1/τ(E, σ ) is proportional to the integral over the unoccupied states of spin σ from the Fermi
energy up to energy E .

In figure 17(b) the lifetime ratio for Ni decreases from τ↑/τ↓ = 9.5 at E − EF = 0.4 eV
to τ↑/τ↓ = 4 at E − EF = 1.3 eV and then slowly decreases further to 2.5 at 3 eV. The
large ratio at low energy is due to the high minority DOS which extends up to 0.4 eV above
EF. The strong decrease of the lifetime ratio with energy is due to the fact that above 0.4 eV
there are no more unoccupied minority d states. The additional phase space gained by going
to higher energy is equal for minority and majority electrons. Thus the relative weight of the
high minority DOS close to EF gets smaller and consequently the lifetime ratio gets smaller.

For Co, the lifetime ratio is nearly constant with a value τ↑/τ↓ = 7.5 up to 1 eV. This is
understandable in view of the high and nearly constant ratio of minority to majority DOS at
low energy. Since the DOS is approximately constant up to 1 eV, the ratio of the lifetimes is
given by τ↑/τ↓ = ρ↓/ρ↑. At 1 eV, there is a small increase in the ratio which reflects the peak
in the minority DOS. Again, the strong peak in the DOS appears only as a weak structure in
τ due to the integration over energy. Above 1.3 eV, the ratio slowly decreases for the same
reason as in Ni: the minority and majority DOS are almost equal and the phase space gained
by increasing the energy is the same for majority and minority states.

The case of Fe is interesting, since it is different from those of Ni and Co. The ratio
increases from τ↑/τ↓ = 0.5–1 for excitation energies between E − EF = 0.5 and 1.3 eV.
Thus, at low energy, majority electrons have a shorter lifetime than minority electrons. This
results from the unoccupied portion of the majority DOS above the Fermi energy, which leads
to a larger phase space for the relaxation of majority electrons and therefore to τ↑ < τ↓. The
ratio is equal to 1 when the integral over unoccupied states becomes the same for minority
and majority electrons. This happens around 1.3 eV. Above 1.3 eV the minority lifetime gets
shorter due to there being more and more unoccupied minority states, leading to τ↑/τ↓ > 1
and a strong increase towards higher energy.

4.2. Effective relaxation time

The effective relaxation time is different from the single-electron lifetime, since it includes the
effects of secondary electrons. Note that transport effects have been neglected here in view of
the fact that they cause only minor changes in the relaxation time of the transition metals [21].
The reason is that the typical transport timescale of about 60 fs is much longer than the electronic
relaxation times in the transition metals. However, secondary-electron effects are important and
cannot be neglected. As was shown in the case of the noble metals, the generation of secondary
electrons leads to the observation of a longer relaxation time, especially at low energy. The
laser pulse excites electrons with energies up to hν. The most energetic electrons relax very
quickly, generating secondary electrons at lower energy as dictated by energy conservation.
The experimental 2PPE spectra also reveal that at low energy many secondary electrons are
present [9]. Thus, when analysing the relaxation of electrons in levels of low energy, it is
absolutely necessary to include the effects of the secondary-electron cascade.

In the following section we will first calculate the relaxation time including secondary
electrons and analyse their effect, using the same parameters for the Coulomb matrix elements
as in the calculation of the lifetime; then we will compare with 2PPE experiments and discuss
the influence of different Coulomb matrix elements.

For comparison with experimental results, we use the same values as in the experiments,
hν = 3.0 eV and τl = 40 fs [9, 21]. Due to the fact that the relaxation time is obtained from a fit-
ting procedure, the lower limit and the accuracy of the calculated relaxation time are about 0.5 fs.
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In figure 17(c) we show the spin-averaged relaxation time to be compared with the single-
electron lifetime from figure 17(a). The inclusion of secondary electrons leads to an increase
of the relaxation time by a factor of about 2 for Ni and Co and about 1.2 for Fe as compared
to the corresponding single-electron lifetime. The increase is almost independent of energy,
although it is slightly stronger at lower energy. The increase in the relaxation time is stronger
for Ni and Co and weaker for Fe. This can be explained by the fact that the inclusion of
secondary electrons leads to a coupling between majority and minority electron populations
via electron–electron scattering. Relaxing minority electrons can excite majority electrons
and vice versa. In Ni and Co the single-electron lifetime of minority electrons is much shorter
than that of majority electrons. However, when including secondary electrons, longer-living
majority electrons will continue to excite minority electrons after the shorter-lived primary
minority electrons have relaxed. The effective minority electron relaxation time as well as the
spin-averaged relaxation time become longer. In Fe the effect is weaker, since the difference
between τ↑ and τ↓ is small. However, the trends among the calculated relaxation times of the
transition metals, particularly the relation τNi < τCo < τFe at E − EF < 1 eV, are unchanged
when secondary electrons are included.

In figure 17(d) we show the ratio τ↑/τ↓ for the effective relaxation time of the photoexcited
distribution to be compared with the value for the single-electron lifetime from figure 17(b). For
Ni the ratio is reduced to τ↑/τ↓ = 3.5–5, for Co to τ↑/τ↓ = 4.5–5.5. The strong reduction of
the ratio τ↑/τ↓ in Ni and Co can again be understood in view of the large spin dependence of the
single-electron lifetime and the coupling between majority and minority electrons induced by
the generation of secondary electrons. For Fe the ratio is nearly unchanged, τ↑/τ↓ = 0.5–1,
because the lifetimes of minority and majority electrons are comparable and the coupling
between them does not lead to a strong change in the relaxation time. The strong structure
in the case of Co is due to small variations in the minority relaxation time, to which the ratio
τ↑/τ↓ is very sensitive. This might however be a calculational problem, since τ↓ is very small
already at 1 eV and cannot be determined very accurately.

After discussing the influence of secondary electrons, we compare experimental and
theoretical results for the spin-averaged relaxation time τave and the ratio τ↑/τ↓ of majority
and minority relaxation times in figures 18 and 19. This comparison is used to determine the
effect of the matrix elements on τave and τ↑/τ↓. For the Coulomb matrix elements we use the
two parameters M and m; see equation (15).

First, the results calculated with M = 0.8 eV for all the transition metals are shown by
the curves a in figures 18 and 19. The differences in calculated relaxation time between Fe,
Co, Ni and Cu are then only due to the different DOS used as input for the calculations. Note
that the calculated relaxation time is smaller than the experimental one in Co and Ni, while it
is larger in Fe. The calculated ratio τ↑/τ↓ is larger for Co and Ni than the experimental one,
but it is smaller for Fe.

Secondly, as curves b, we show the results of calculations using again M = 0.8 eV, but
the reduced value m = 0.5. Due to the Pauli exclusion principle the matrix element M↑↑ for
scattering between parallel spins contains the effect of exchange (for details see the appendix
of [21]). Thus one expects the matrix element M↑↑ for parallel spins to be smaller than M↑↓ for
antiparallel spins, since electrons with parallel spins avoid each other due to the Pauli exclusion
principle [22]. A value m < 1 is further justified by the result of a calculation which indicates
that the effect of exchange, which is contained in the matrix element M↑↑, increases the lifetime
for a free-electron gas at metallic densities by a factor of 1.7 [23]. As a consequence of using
m = 0.5 in the calculation, the ratio τ↑/τ↓ in figure 19 is strongly reduced in Co and Ni, while
it is increased in Fe, which leads to satisfactory agreement for τ↑/τ↓ between experimental and
theoretical results. Note also that there is a considerable scatter in the experimental data, and
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Figure 18. The spin-averaged effective relaxation time for a pulse with 40 fs duration and 3.0 eV
photon energy. For the Coulomb matrix elements, we use (a) M = 0.8 eV, m = M↑↑/M↑↓ = 1,
(b) M = 0.8 eV, m = 0.5, (c) M = 0.4 eV, m = 0.5, (d) M = 1.0 eV, m = 0.5.

the error bars might actually be larger than shown in the figures. The spin-averaged relaxation
time in figure 18 is not strongly affected by the value of m.

Thirdly, we take into account different Coulomb matrix elements M for the various metals,
while we still use m = 0.5. The results are given by the curves c and d in figures 18 and 19.
For Co and Ni we use M = 0.4 eV, while for Fe we take M = 1.0 eV. In the case of Cu we use
M = 0.8 eV. The use of these values for M leads to reasonable agreement between theoretical
and experimental results for both spin-averaged relaxation times in figure 18. The ratio τ↑/τ↓
in figure 19 is almost unchanged on changing M . Thus in the transition metals, in addition to
the DOS, the Coulomb matrix elements play an important role in the relaxation time.

The Coulomb matrix elements for Fe, Co, Ni and Cu are different due to the influence
of the d electrons. Note that while for isolated atoms Coulomb matrix elements do not vary
much from Cu to Fe [24], for solids the band character, the position of the d band and the
screening of d electrons are expected to change this. The screened Coulomb matrix elements
are influenced by d electrons in two ways:

(1) d-electron wavefunctions are more localized than sp-electron wavefunctions, leading to
smaller Coulomb matrix elements for transitions involving d states;

(2) the d electrons contribute to the screening of the Coulomb potential, leading to smaller
Coulomb matrix elements if more d electrons are present.

The strong localization of d electrons leads to smaller overlap with sp-electron
wavefunctions and therefore to smaller transition matrix elements when sp → d transitions
are involved as compared to matrix elements involving sp → sp transitions. The d-electron
wavefunctions in the solid get more localized from Fe to Cu. Thus one expects the matrix
elements for transition metals, which are strongly influenced by d electrons, to be smaller than
those for noble metals, which are mainly due to sp electrons. This explains the smaller matrix
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Figure 19. The ratio τ↑/τ↓ of the effective relaxation time for a pulse with 40 fs duration and 3.0 eV
photon energy. For the Coulomb matrix elements, we use (a) M = 0.8 eV, m = M↑↑/M↑↓ = 1,
(b) M = 0.8 eV, m = 0.5, (c) M = 0.4 eV, m = 0.5, (d) M = 1.0 eV, m = 0.5.

elements for Co and Ni compared with Cu, but would also suggest smaller matrix elements
for Fe. The argument for smaller matrix elements for Co and Ni is in accordance with a recent
study by Zarate et al [25], which indicates that Coulomb matrix elements are smaller when
more d wavefunctions are involved in the transition.

The additional screening of d electrons is contained in the dielectric function ε(|r−r′|, ω),
where ω is the energy transferred in the transition. For small ω, d electrons close to the Fermi
energy contribute mainly to screening. In the static limit (ω → 0), the Lindhard dielectric
function for a free-electron gas reduces to ε(q) = 1 + k2

0/q2 with the result that the screened

Coulomb interaction in real space takes the form V (r) = e2

r e−k0r . In the Thomas–Fermi
approximation, the screening wavevector is directly related to the DOS at the Fermi level [26],
k0 = 4πe2ρ(EF). In the case of transition metals, the expressions are not strictly valid because
d electrons are not free-electron-like. Although the quantitative contribution of d electrons to
screening is not well known, qualitatively it is clear that a higher DOS near the Fermi level
leads to stronger screening. However, for larger energy transfer ω, electrons further away from
the Fermi energy also contribute to screening. Then ultimately the total number of d electrons
influences the screening. This could be why Fe, which has fewer d electrons, has a larger
Coulomb matrix element than Co, Ni and Cu. The simple argument about the screening by d
electrons is in line with ab initio calculations. The influence of the d electrons on screening
was recently investigated in ab initio calculations of the lifetimes in Cu [2, 4] and in Au and
Ag [3]. It was found that in Cu, the d bands lying 2 eV below EF have a very strong influence
on the screening properties and cause an increase of the lifetime by a factor of 2–3.

In conclusion, the relaxation times in transition metals are influenced both by the DOS
and the Coulomb matrix elements. The latter are sensitively affected by the localization of the
wavefunction and the screening properties. Ab initio calculations using realistic wavefunctions
are required for a reliable estimate of their magnitude. Our results obtained by comparison
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with measured relaxation times in transition metals indicate that M = 0.4 eV for Co and Ni
and M = 1.0 eV for Fe. For Cu, we used M = 0.8 eV. Thus there seems to be no simple trend
for the matrix elements among the 3d metals.

5. Conclusions

We have presented a theory for the ultrafast dynamics of excited electrons in metals including
effects of the optical excitation pulse, inelastic electron–electron scattering, ballistic transport
and elastic electron–phonon collisions. We have found that the calculated relaxation time
reflects the interplay of the optical excitation, excited-electron relaxation, secondary-electron
generation, ballistic transport of electrons out of the detection region and elastic electron–
phonon collisions. Thus our theory has shown that 2PPE can be used to study a wide range of
ultrafast dynamical processes in solids and has helped to identify the influence of the different
mechanisms on the relaxation time measured in 2PPE experiments.

For the noble metals Cu, Ag and Au, the relaxation time obtained from I 2PPE(E,�t)
including the effect of the photoexcitation and of the secondary electrons is longer than the
single-electron lifetime, indicating that secondary electrons have a strong influence on the
relaxation time. The calculated relaxation times in Cu and Au show a peak at the threshold
for photoexcitation from the d band as found by 2PPE experiments. For Cu, the position
and structure of the peak are in fair agreement with the experimental results. The relaxation
time at the peak position depends linearly on the d-hole lifetime τh. Using τh = 35 fs and
R = |Mds/Mss|2 = 2 for the ratio of the optical matrix elements for d → sp and sp → sp
transitions, we obtain for the height of the peak �τ = 14 fs, in good agreement with the
experimental results for a polycrystalline sample, �τ = 17 fs.

It was shown that the effect of ballistic transport of excited electrons out of the detection
region strongly reduces the relaxation time in the noble metals at low energy, while it is nearly
unchanged at higher energy.

The influence of elastic electron–phonon collisions changes the nature of the transport
from ballistic at zero temperature to diffusive at room temperature. As a consequence, the
relaxation time increases significantly with increasing temperature. Using the electron–phonon
scattering rate from the literature, we obtain excellent agreement with experimental results for
the temperature dependence of the relaxation time in Cu.

The film thickness dependence of the relaxation time was investigated. For film thickness
d < 100 nm, the confinement of excited electrons in the film reduces the transport effect and
increases the relaxation time compared to the results for a bulk sample. Our results indicate
that films of varying thickness can be used to determine the transport effect by means of 2PPE,
analogously to studies by optical techniques. The study of thin films by means of 2PPE has
only begun, and the quantitative influence of the transport effect in films is still not settled. A
systematic study can offer detailed information about the transport of excited electrons.

For the ferromagnetic transition metals Fe, Co and Ni, we calculated spin-dependent
single-electron lifetimes. Due to the high d-band DOS, the spin-averaged lifetimes are much
shorter than in the noble metals. The relaxation time from I 2PPE(E,�t) including effects
of secondary electrons is longer than the lifetime, and the ratio τ↑/τ↓ is reduced due to the
coupling between minority and majority electrons caused by the secondary-electron cascade.
In connection with this observation, a study of the time evolution of the spin polarization as
a function of energy by means of 2PPE would be very interesting. This can provide detailed
information about the transient magnetization in the excited levels, which can be related to the
results using magneto-optical techniques for the study of the ultrafast magnetic dynamics.

When comparing the calculated spin-averaged relaxation times for the transition metals
with experimental results from 2PPE studies, fair agreement is found when we use for the
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Coulomb matrix elements MCo � MNi < MFe. The different matrix elements reveal that the
exact nature of the electronic wavefunctions and the influence of screening play important
roles. For the transition metals, a detailed study of the Coulomb matrix elements by means of
ab initio calculations is desirable in order to clarify their magnitude and spin dependence.

In the future, extensions of the theory which permit a k-selective analysis of 2PPE,
k-dependent relaxation with lifetimes τk,σ , non-equilibrium studies relating to strong laser
intensities and temperature effects due to Tel(t) and Tel �= Tlatt would be of interest. The
important Coulomb matrix elements M and their screening should be calculated directly.
Also, quantum interference effects should be included (see [6]).
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